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Abstract—Nowadays, vehicles have been increasingly adopted in many spatial crowdsourcing (SC) applications. Similar to other SC
applications, location privacy is of great concern to vehicle workers as they are required to disclose their own location to servers to facil-
itate the service utilities. Traditional location privacy protection mechanisms cannot be applied to vehicle-based SC since they assume
workers’ mobility on a 2-dimensional plane without considering the network-constrained mobility features of vehicles. Accordingly, in
this paper, we aim at addressing issues related to Vehicle-based spatial crowdsourcing Location Privacy (VLP) over road networks. Our
objective is to design a location obfuscation strategy to minimize the quality loss due to obfuscation with geo-indistinguishability satisfied.
Considering the computational complexity of VLP, by resorting to discretization, we first approximate VLP to a linear programming
problem that can be solved by well-developed approaches. To further improve the time-efficiency, we conduct constraint reduction
for VLP by exploiting key features of geo-indistinguishability in road networks and problem decomposition based on VLP’s constraint
structure. Finally, we carry out both trace-driven simulation and real-world experiments, where our experimental results demonstrate the
superiority of our approach over a known state-of-the-art location obfuscation strategy in terms of both quality-of-service and privacy.

Index Terms—Spatial crowdsourcing; geo-indistinguishability, location privacy; location obfuscation.
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1 INTRODUCTION

S PATIAL crowdsourcing (SC) [1] has emerged as a new
mode of crowdsourcing to enable requesters to out-

source their spatial tasks (i.e., tasks related to a location)
to a set of mobile workers. In SC, task requesters register
through a centralized server and publish tasks with target
locations or spatial routes. If a worker accepts a task, he/she
needs to physically present at the task location to perform
the task. To date, SC has been applied to many different
domains, such as smart cities [2] and environmental sensing
[3]. Particularly, with the advent of intelligent transportation
systems (ITS), vehicle-based spatial crowdsourcing (VSC) is
evolving rapidly [4]. For example, many recent studies have
proposed to use vehicle crowdsourcing workers as mobile
agents to help maintain vehicle ad hoc networks (VANETs),
for tasks such as data dissemination and query processing
(e.g., [4]–[6]). In some other vehicle-related applications,
VSC has been used for data sharing and collection [7], or to
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improve traditional transportation systems such as Uber [4].
As workers have to physically move to tasks’ location to

complete tasks in VSC, a VSC server usually allocates tasks
to the workers that have low traveling cost (e.g., traveling dis-
tance) in order to promote a cost-effective task assignment
[8]–[10]. To this end, each worker is required to disclose
his/her location to the server in real time. Such location
information exposure, unfortunately, may lead to privacy
breaches not only related to the whereabouts of the vehicle,
but also related to other sensitive information, e.g., home
address, sexual preferences, religious inclinations, etc [11].

In fact, location privacy research has gained great at-
tention over the last decade and a variety of location pri-
vacy protection mechanisms (LPPM) have been developed,
such as cryptographic strategies [12], [13], k-anonymity [14],
[15], cloaking [16], [17], and pseudonym based methods [18].
Among these strategies, location obfuscation stands as one
of the dominating LPPM paradigms in SC due to its high
effectiveness of location privacy protection and low compu-
tation load for mobile devices [19]–[27]. In location obfus-
cation, each user is allowed to report a perturbed location
instead of his/her real location to servers.

As a growing effort aims to address the location privacy
issues via location obfuscation, a formal notion of location
privacy, namely Geo-Indistinguishability (or Geo-I), was intro-
duced by Andrés et al. recently [28]. Geo-I can be considered
as a generalization of the statistical notion differential privacy
[29]. According to Geo-I, if two locations are geographically
close, they will have similar probabilities to generate a
certain reported location. In the other words, the reported
location will not provide enough information to an adver-
sary to distinguish the true location among nearby ones.
Subsequent to this notion of Geo-I, a variety of improved
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Fig. 1. Traveling cost distortion caused by obfuscated locations A and B
(P : actual location; Q: task location).

Example I: A andB have the same Euclidean distance toQ, and hence
they introduce the same traveling distance distortion from P on the 2D
plane. However, both B and P need to take a detour to reach Q over
roads, while A can reach Q with almost a straight path. In this case, the
traveling cost distortion generated by A is much higher than that of B.

Example II: Compared with B, A has a shorter Euclidean distance to
Q, indicating that A and B offer different traveling cost distortions from
P on a 2D plane. However, A and B have the same traveling distance to
Q over roads, so the traveling distance distortions generated by A and
B over the road network are the same.

location obfuscation methods have been proposed [24]–[27].
Particularly, considering that users’ location privacy is
usually protected at the expense of cost-effectiveness, many
of these works introduce optimization-based approaches
(e.g., linear programming) to minimize the overall traveling
cost for all the workers and still preserve privacy [24], [30].

However, most of these approaches consider workers’
mobility in a 2 dimensional (2D) plane [31], where workers
can move in every direction without any restriction [19],
[20], [24]–[26], [28]. Clearly, such assumption is hardly to
be applied in VSC as workers’ mobility in VSC is more
structured, i.e., vehicles have to operate over road net-
works and follow traffic regulations, which may disclose
additional information to the adversary, and hence increase
the risk of location exposure [32], [33]. More importantly,
the approaches based on 2D is more likely to generate
high traveling cost, as the sensitivity of traveling cost to
location obfuscation over road networks varies much more
significantly across different road segments compared with
that of 2D (Fig. 1(a)(b) gives two examples).

Considering the different features of vehicle workers’
mobility over a road network than in a 2D plane, in this
paper, we aim to solve the Vehicle based spatial Crowdsourcing
Location Privacy (VLP) problem over a road network. We
model the road map by a weighted directed graph and assume
that both workers’ and tasks’ are located on the graph.
We consider a location obfuscation approach under which
workers are allowed to report an obfuscated location instead
of their true location, where the obfuscated location is proba-
bilistically selected over the graph. Our objective is to deter-
mine the probability distribution of obfuscated location over
the graph (so-called location obfuscation strategy), such that
1) the distortion of estimated traveling distance for each worker
is minimized and 2) Geo-I is satisfied. As for privacy, instead
of adopting the Geo-I defined in [28], which is Euclidean
distance based, we redefine the notion of Geo-I based on
path distance in directed weighted graphs (details can be
found in Definition 3.1). This correction, however, increases
the complexity of VLP from an algorithmic perspective.

We start by discussing VLP in a general case, where the
probability distribution of obfuscated location is defined
in a continuous region. Considering the computational in-
tractability of VLP, we then approximate the problem via

discretization, i.e., each edge in the graph is partitioned into
small intervals and the locations within each interval don’t
need to be differentiated. The approximated VLP, called
Discretized VLP or D-VLP, can be then formulated as a linear
programming (LP) problem. Nevertheless, D-VLP is hardly
to be solved efficiently by using standard LP approaches
due to its high number of Geo-I constraints (O(K3)) and
decision variables (O(K3)), where K represents the number
of intervals partitioned over the road network. As a solution,
we first reduce the number of Geo-I constraints from O(K3)
to O(K2) by exploiting the transitivity property of Geo-I
over road network (Theorem 4.2). To further improve the
time efficiency, by using the angular block structure of the
constraint of D-VLP, we design a two-layer algorithm via
optimization decomposition. The algorithm is composed
of i) a master program (in the upper layer) to search the
optimal solution and ii) a list of subproblems (in the lower
layer) to check the optimality of the solution derived by the
master program. The problems in both layers can be solved
efficiently via standard LP methods and a near-optimal
solution can be derived efficiently via the communication
between the two levels. In addition, we provide a trade-off
analysis between privacy and QoS in the D-VLP.

With respect to performance, we carry out both simula-
tion (using a dataset of taxi cabs’ trajectories in Rome, Italy
[34]) and real-world experiment. The experimental results
from both simulation and real-world test demonstrate that
our approach outperforms a state-of-the-art location obfus-
cation mechanism [24] in terms of both quality loss and pri-
vacy. Specifically, compared with [24], in the simulation, our
approach reduces the quality loss by 12.35% and increases
the expected error from adversaries by 6.91%. In the real-
world experiment, our method reduces the quality loss by
6.31% and increases the expected error from adversary by
9.68%. In addition, we show that D-VLP offers a reasonably
good approximation with VLP in term of the quality loss in
both simulation and real-world experiment.

We summarize our contributions as follows:
1) We formulated a new problem called VLP problem, of
which the objective is to minimize the estimated traveling
cost distortion without compromising location privacy.
2) Considering the computational intractability of VLP, we
approximate VLP to a LP problem by discretization. To
solve VLP in a time-efficient manner, we design a two-layer
algorithm via optimization decomposition. We also provide
a trade-off analysis between privacy and QoS in the VLP.
3) We conduct both simulation and real-world experiment to
test the performance our approach. The experimental results
demonstrate that our approach outperforms one existing
2D-based method in terms of both QoS and privacy and the
two-layer algorithm can achieve the optimal closely with
high time-efficiency.

The remainder of the paper is organized as follows: We
introduce the model and the VLP problem in Section 3 and
propose a time efficient solution in Section 4. In Section 5,
we test the performance of our approach. Finally, we present
related work in Section 6 and conclude in Section 7.

2 FRAMEWORK
Fig. 2 shows the framework of our location obfuscation
strategy in SC, which is composed of both worker and
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server sides. On the worker side, a worker can label his/her
current status by either available or unavailable. Only available
workers are considered as candidates for the task assign-
ment and are responsible for reporting their locations to
the server. Once receiving a task, each available worker will
head towards the assigned task location instantly, regardless
of whether or not they are moving (driving). The worker’s
status will be switched to occupied and the status won’t
be switched back to available until the worker completes
a task and is ready for new ones. For simplicity, in what
follows, when we mention “workers”, we refer to “available
workers” on the platform.

To protect each worker’s location privacy, instead of
frequently requiring location updating, our framework only
requires the worker to upload his/her obfuscated location
before a snapshot of task assignment. Based on the worker’s
reported location, the server then determines which task to
be assigned to this worker. The server is also responsible
for generating an obfuscation function (strategy) that can be
downloaded by the worker. With the obfuscation function,
the worker takes his/her current location as the input and
obtains a probability distribution of the obfuscated location
as the output.

The obfuscation function is initialized when the system
is set up. After initialization, the function is updated by the
server based on the change of the worker’s location distribu-
tion (estimated by the worker’s reported location). Like [30],
[35], we assume that the server may suffer from a passive
attack, where attackers can eavesdrop vehicles’ reported locations
breached by the server. Note that although the server takes
charge of generating the obfuscation function, the worker’s
location privacy is still guaranteed since 1) the obfuscated
locations are problematically selected and 2) the obfuscation
function is designed to satisfy the privacy criteria (Geo-
I) even if the adversary obtains both workers’ reported
location and the obfuscation function from the server.

In a nutshell, the server determines the obfuscation
function to achieve the following two objectives:
1) Quality loss minimization, i.e., to minimize the distortion
of estimated distance based on obfuscated locations;
2) Privacy guarantee, i.e., geo-indistinguishability is satisfied.

Next, we will mathematically formalize the problem of
generating obfuscation function (VLP) to achieve the above
two objectives.

3 MODEL AND PROBLEM FORMULATION

In this section, we first introduce the model, including
notations and assumptions that will be used throughout the
paper in Section 3.1 and Section 3.2. Based on the model, we
then formulate the VLP problem in Section 3.3.

3.1 Road Network Model

Like [30], [36], we represent the road network by a set of
roads. When a road intersects, furcates, joins with other
roads, or turns into a different direction, a connection is
created (as shown in Fig. 3). These connections divide roads
into multiple road segments, which only connect with other
road segments at their end points. Accordingly, the road
network can be represented by a weighted directed graph
G = (V, E), where V denotes the connection set and E ⊆ V×V
denotes the route segment (edge) set. Each edge e ∈ E is
directed, presented by an ordered pair (vs

e, v
e
e) (vs

e, v
e
e ∈ V),

where vs
e and ve

e denote the starting and the ending con-
nections of e, respectively. That is, vehicles can only move
from vs

e to ve
e on e in the road network. Each e is allocated

with a weight we, which can be interpreted as the shortest
traveling distance [30], the lowest traveling time [37], or
their combination [27]. In this paper, we consider traveling
distance as the main factor for task assignment. In this case,
we is defined as the traveling distance from vs

e to ve
e. Given

different preferences from the requester, the model can be
extended by redefining the weights of edges. For example,
if the requester expect both low traveling distance and low
latency, we can be redefined as a weighted sum of traveling
distance and traveling time across the edge e.

intersects
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Fig. 3. Auxiliary graph.

To derive the travel-
ing distance between the
worker and the task, be-
sides the road network in-
formation and the task lo-
cation, the server also re-
quires the worker to re-
port his/her own location
in real time. We assume
both task and worker are
located in the road net-
work G, and let p and q denote the worker and the task’s
location, respectively. Each location point p (or q) is repre-
sented by an ordered pair: p = (e, x), where e represents
the edge that p is located in and x (x ∈ (0, we]) denotes the
path distance from p to e’s endpoint ve

e.

TABLE 1
Main notations and definition

Notation Description
G = (V, E) The road network, where V and E

denote its connection set and its edge
set

we The weight (length) of edge e
p The worker’s true location
p̃ The worker’s obfuscated location
q The task location
vse (vee) The starting (ending) point of edge e
e(p) (e(q)) The edge that p (q) is positioned in
dG(v,v′) The traveling distance from location v

to location v′ in G (in one direction)
dmin
G (v,v′) The ShTD between location v and

location v′ in G (in two directions)
∆dG (p, p̃;q) The difference between dG(p,q) and

dG(p̃,q)
fP (p) (fQ(q)) The prior PDF of p (q)
fP̃ (p̃|P = p) The conditional PDF of the obfuscated

location p̃ given the true location p
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Given any pair of locations v and v′ in the road network
G, we let dG(v,v′) represent the shortest traveling distance (or
traveling distance for simplicity) from v to v′ in G (in one
direction). Note that dG(v,v′) and dG(v′,v) are possibly
different since they measure the traveling distance of differ-
ent paths. We let dmin

G (v,v′) denote the traveling distance
between v and v′ (in both directions):

dmin
G
(
v,v′

)
= min{dG(v,v′), dG(v′,v)}. (1)

Table 1 lists the main notations and their descriptions used
throughout this paper.
3.2 Threat Model
Like [28], [35], [38], instead of frequently requiring location
reports from workers, our framework only requires workers
to upload their obfuscated locations before a snapshot of
task assignment. In such a scenario, the locations reported
by each worker in different rounds are less correlated, which
allows us to consider the inference attack in each round
independently.

However, to check the performance of our privacy pro-
tection strategy when workers report their locations multi-
ple times, we also develop a spatial correlation aware threat
model by considering multiple reports from each worker.
3.2.1 Worker
To maintain location privacy, the worker will report an
obfuscated location p̃ instead of his/her true location p,
where p̃ is probabilistically determined. We use random
variables P and P̃ to represent the worker’s true and obfus-
cated location, respectively. When reporting the obfuscated
location, the worker’s true location is given, i.e., P = p, and
hence the reported location distribution can be described by
a conditional PDF fP̃ (p̃|P = p), where∑
e∈E

∫
[0,we]

fP̃ (p̃|P = p)dx = 1 (probability unit measure). (2)

The obfuscation function is essentially the collection of condi-
tional PDFs given all possible p

F = {fP̃ (p̃|P = p)|p = (e, x), e ∈ E , x ∈ (0, we]} . (3)

3.2.2 Adversary
When the vehicle reports its obfuscated location to the
server, its true location is hidden from the attacker. How-
ever, the vehicle’s obfuscated location is related to its true
location by following a probability distribution determined
by the vehicle’s true location and the obfuscation matrix
Zt. As such, the location of the targeted worker from the
adversary can be estimated by a probabilistic model:

a) Bayesian inference attack (based on single location report).
Given a reported location p̃ from the worker, the adversary
tries to find the true location p by calculating p’s probability
distribution. Here, we consider the scenario that the adver-
sary has full information about the worker’s obfuscation
strategy F and the worker’s prior PDF fP (p). Then, given
the reported p̃, the adversary can derive the PDF of the true
location p by the Bayes’ Theorem [39]:

fP
(
p|P̃ = p̃

)
=

fP̃ (p̃|P = p) fP (p)∫
G fP̃ (p̃|P = p′) fP (p′) dp′

(4)

b) Spatial correlation aware attack (based on multiple location
reports). Due to the constraints of the road network environ-
ment and traffic conditions, if a vehicle reports its locations

multiple times, each pair of adjacent location reports are
possibly spatially correlated. The spatial correlation infor-
mation can be possibly used by the adversary to improve
the accuracy of location inference.

Specifically, from the adversary’ point of view, hid-
den Markov model (HMM) offers a straightforward model
to characterize the vehicles’ network-constrained mobility
feature. In each round t, the vehicle’s true location P t

and reported location P̃ t are considered as its hidden and
observable states, respectively, where P t follows a Markov
process, i.e., P t only depends on P t−1. We let the transition
matrix Ht,t′ =

{
ht,t

′

i,j

}
K×K

(t < t′) describe the transition
probabilities between the vehicle’s hidden states from round
t to t′, where ht,t

′

i,j = Pr
(
P t

′
= pj |P t = pi

)
.

With HMM, given the observed sequence
{
p̃1, ..., p̃T

}
and the transition matrix H1,2,H2,3, ...,HT−1,T , the task of
the attacker is to derive the maximum likelihood estimate of
the vehicle’s true location sequence

{
p̂1, ..., p̂T

}
.

The Transition matrix in HMM can be learned via
floating vehicle data [37]. The dataset usually records the
vehicles’ coordinates along with the timestamps. Given the
dataset, we can calculate each the transition probability
ht−1,t
i,j by

ht−1,t
i,j =

# of vehicles moving from pi to pj from round t− 1 to t
# of vehicles in pi in round t− 1

.

(5)
After deriving the transition matrices in HMM, the attacker
can use well-developed hidden state inference algorithms
such as the Viterbi algorithm [40] to infer the vehicle’s real
location sequence

{
p̂1, ..., p̂T

}
.

3.3 Problem Formulation

Before formulating the problem, we first define the two
metrics that are considered for the location obfuscation
strategy: privacy and quality loss.

Privacy. We aim to achieve quasi-indistinguishability or Geo-
Indistinguishability (Geo-I) [28] for any pair of locations that
are close to each other. Geo-I corresponds to a generalized
version of the well-known concept of differential privacy. The
idea of Geo-I on a 2D plane is to require a small change of a
single user’s location, measured by Euclidean distance, so as
not to affect the distribution of his/her reported location too
much. Following this idea, we redefine Geo-I on a weighted
directed graph in Definition 3.1, where we measure the
difference between any pair of locations by their traveling
distance on graph, rather than their Euclidean distance.
Particularly, for each pair of locations, we consider the
traveling distance in both directions and pick up the shorter
one as the measure of privacy.

Definition 3.1. A location obfuscation strategy satisfies
(ε, r)-Geo-I if and only if for any pair of true locations pi
and pl such that dmin

G (pi,pl) ≤ r and for any obfuscated
location p̃,

fP
(
pi|P̃ = p̃

)
fP
(
pl|P̃ = p̃

) ≤ eεdmin
G (pi,pl) fP (pi)

fP (pl)
, (6)

where r is the radius of the obfuscation area and ε is
the parameter to quantify how much information of the
true location will be disclosed according to the reported
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Fig. 4. Derivation of dG(p,q) under three cases.

location, where higher ε implies more information to be
disclosed.

According to Equ. (4), Equ. (6) can be rewritten as

fP̃ (p̃|P = pi) ≤ eεd
min
G (pi,pl)fP̃ (p̃|P = pl) . (7)

Quality loss. Given the worker’s obfuscated location p̃,
his/her true location p, and the task location q, we measure
the quality loss by the estimated traveling distance distortion
(ETDD) to the task location q, which, more precisely, is
defined as the difference between the estimated traveling
distance dG(p̃,q) and the true traveling distance dG(p,q):

∆dG (p, p̃;q) = |dG(p,q)− dG(p̃,q)| . (8)

As opposed to 2D plane, the quality loss in a vehicle road
map is highly impacted by the topology of the network. We
derive dG(p,q) by considering the following two cases (we
use e(q) and e(p) to represent the edges that q and p are
located in).

C1: When e(q) 6= e(p) (Fig. 4(a)), or when e(q) = e(p) but p
has shorter traveling distance to its endpoint of e(p), ve

e(p),
than q (Fig. 4(b)):

In this case, the worker’s traveling path has to first reach
the current edge’s endpoint ve

e(p), then the starting point of
q’s edge, vs

e(q), and finally the destination location q. Hence,
the traveling distance from p to q is calculated by
dG(p,q) = dG

(
p, vee(p)

)
+ dG

(
vee(p), v

s
e(q)

)
+ dG

(
vse(q),q

)
= dG

(
vee(p), v

s
e(q)

)
+ xp + le(q) − xq. (9)

C2: When e(q) = e(p) and p has longer path distance to
the edge’s endpoint ve

e(p) than q (Fig. 4(c)), the traveling
distance from p to q is

dG (p,q) = dG
(
p, vee(p)

)
− dG

(
q, vee(p)

)
= xp − xq. (10)

A similar derivation can be applied to dG(p̃,q). Consid-
ering the possible (p,q) (and (p̃,q)) in the above two cases,
we can derive ∆dG (p, p̃;q) as

∆dG (p, p̃;q) (11)

=


∣∣∣dG(vee(p)

, vs
e(q)

)− dG(vee(p̃)
, vs
e(q)

) + xp − xp̃
∣∣∣ C(1, 1)∣∣∣dG(vee(p)

, vs
e(q)

) + xp + le(q) − xp̃
∣∣∣ C(1, 2)∣∣∣dG(vee(p̃)

, vs
e(q)

) + xp̃ + le(q) − xp
∣∣∣ C(2, 1)∣∣xp̃ − xp∣∣ C(2, 2)

,

where C(i, j) represents when (p,q) is in case i and (p̃,q)
is in case j.

In addition, we assume that the task location q won’t
be exposed to the worker before the worker selects his/her
obfuscated location. The worker however has the prior dis-
tribution of the task, fQ(q), based on the historical record,
where Q denotes the random variable to describe the task

location. Then, given the location obfuscation approach F ,
the worker can obtain ETDD (quality loss):

E
(

∆dG
(
P, P̃ ;Q

))
(12)

=

∫ ∫ ∫
∆dG (p, p̃;q) fQ(q)fP (p)fP̃ (p̃|P = p)dp̃dqdp

Problem Formulation. Based on the definition of Geo-I
(Equ. (7)) and the quality loss (Equ. (12)), the probability
unit measure (Equ. (2)), we formulate the VSC Location
privacy Protection (VLP) problem as:

min E
(

∆dG
(
P, P̃ ;Q

))
(13)

s.t. fP̃ (p̃|P = pi) ≤ eεd
min
G (pi,pl)fP̃ (p̃|P = pl) ,

∀pi,pl, p̃ in G, with dmin
G (pi,pl) ≤ r, (14)∑

e∈E

∫
[0,we]

fP̃ (p̃|P = p)dx = 1,∀pi ∈ G. (15)

The objective of VLP is to determine each location obfus-
cation strategy fP̃ (p̃|P = p) in F such that ETDD is
minimized (Equ. (13)) and (ε, r)-Geo-I is satisfied (Equ. (14)).

In VLP, although our target is to minimize the error of
estimated traveling distance for a single vehicle, achieving
such goal can also reduce the overall traveling cost for
multiple vehicle-task assignment. Given accurate estimated
traveling cost for every single vehicle, the server is more
likely to assign tasks to their nearest vehicles and hence
achieve a lower total traveling cost.

However, finding the optimal fP̃ (p̃|P = p) is computa-
tional intractable as it is difficult to describe fP̃ (p̃|P = p) (a
general continuous function) with finite number of decision
variables. As workers are mostly highly dynamic, and hence
are required to update their location information in a timely
fashion, it is of great importance to find a location obfusca-
tion strategy that can achieve near-minimum quality loss with
low time complexity.

TABLE 2
Additional notations and definition in Section 4

Notation Description
uk The kth interval partitioned in G
us
k (ue

k) The starting (ending) point of uk
U The set of intervals U = {u1, ...,uK}
δ The length of each partitioned interval uk
δ(p) The relative location of p
G′ The auxiliary graph describing the
= (U ′, E ′) interval set U , where U ′ corresponds U

and E ′ corresponds the distance between
adjacent intervals in U

u′k The vertex corresponding to uk in U ′
G(ε,r)
' u′i

G(ε,r)
' u′l if Geo-I is satisfied in the

direction from u′i to u′l (Definition 4.2)

4 ALGORITHM DESIGN AND ANALYSIS

In this section, we aim to design a time efficient algorithm
for VLP. The basic idea is to approximate VLP to a LP
problem via discretization (Section 4.1). After that, by ex-
ploring key features of Geo-I over road networks, we design
an approach that can further reduce the complexity of the
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descretized VLP via constraint reduction (Section 4.2) and
optimization decomposition (Section 4.3). Table 2 lists the
additional notations used in this section.

4.1 Problem Approximation
The obfuscation function in VLP is defined in a continuous
region, i.e., the road network, which cannot be represented
by finite number of decision variables. As a solution, we
approximate VLP by discretization, in which we only need
to consider the obfuscated location probability in intervals
instead of in a continuous region. We denote the discretized
problem by discretized-VLP or D-VLP. More precisely, we
formulate D-VLP from VLP by the following three steps:

u1uk
...uk+1

p

p

d(p)

xe
uk

xs
uk

relative location of p

Fig. 5. Edge partition.

Step I: Each edge is partitioned
into route intervals with length δ
(as depicted in Fig. 5). We let U =
{u1,u2, ...,uK} (K = |U|) denotes
the set of intervals in the road net-
work G, and let us

k =
(
e, xs

uk

)
and ue

k =
(
e, xe

uk

)
denote the two

endpoints of each uk (in edge e),
where xs

uk
− xe

uk
= δ. For a true

location p = (e, x) that is in uk,
we call δ(p) = x − xe

uk
the relative location of p in uk

(0 ≤ δ(p) ≤ δ) 1.
Step II: The obfuscated location p̃ is required to have the
same relative location with its true location p, i.e., δ(p) =
δ(p̃) whichever interval is p̃ in.
Step III: For any pair of true locations p1 and p2 that are
in the same interval ui, the probabilities of their obfuscated
location p̃1 and p̃2 in each interval ul are the same, i.e.,

Pr(p̃1 ∈ ul|P = p1) = Pr(p̃2 ∈ ul|P = p2) (16)

where l = 1, ...,K.
We note that Step II and Step III introduce additional

constraints to VLP, and hence they shrink the feasible region
of VLP [41], indicating that the optimal solution of D-VLP
offers an upper bound of the minimum quality loss in VLP.
Proposition 4.1. Suppose that a pair of true locations p1 and

p2 are in the same interval ui. Then, in D-VLP:
A) Given any task location q, p1 and p2 have the same
ETDD to q, i.e.,

E
(

∆dG
(
p1, P̃1;q

))
= E

(
∆dG

(
p2, P̃2;q

))
. (17)

B) A location obfuscation function satisfies (ε, r)-Geo-I
for p1 if only if it satisfies the constraint for p2.

Proof The detailed proof can be found in [30].

Proposition 4.1 indicates that there is no need to differ-
entiate any pair of true locations within the same interval
when calculating quality loss or checking Geo-I. Accord-
ingly, we can rewrite the objective function in VLP (Equ.
(13)) based on Proposition 4.1-A:

E
(

∆dG
(
P, P̃ ;Q

))
=
∑
i

∑
l

ci,lzi,l (18)

1. Due to the variety of edge length, there exists some intervals with
length smaller than δ. But as δ is small enough, we won’t discuss
these intervals in the following part considering the tractability of our
solution.

where zi,l represents the probability that the obfuscated
location p̃ is in ul given the true location p in ui and

ci,l =

∫
ui

∫
ul

∫
∆dG (p, p̃;q) fQ(q)fP (p)dqdp̃dp (19)

is a constant (note that ∆dG (p, p̃;q), fQ(q), fP (p) are all
known). According to Proposition 4.1-B, the Geo-I constraint
in VLP (Equ. (14)) can be rewritten by

zi,j − eεd
min
G (ue

i ,u
e
l )zl,j ≤ 0,∀ui,uj ,ul s.t. dmin

G (ui,ul) ≤ r (20)

where dmin
G (ui,ul) = dmin

G (us
i ,u

e
l ), and the probability unit

measure (Equ. (15)) can be rewritten by∑
j zi,j = 1, ∀i (21)

Eventually, D-VLP can be written as a LP problem:

min
∑
i

∑
l

ci,lzi,j s.t. Equations (20)-(21) is satisfied.

where the decision variables are Z = {zi,j}K×K . For
simplicity, we let zj = [z1,j , ..., zK,j ] (j = 1, ...,K). In
[30] (Proposition 3.3), we have derived a lower bound of
the minimum quality loss in VLP to check how close the
solution of D-VLP can achieve the optimal of VLP (e.g.,
experimental results are shown in Fig. 10(a)(b)).

4.2 Constraint Reduction
According to the definition of (ε, r)-Geo-I (Equ. (20)), given
any obfuscated interval uj (j = 1, ...,K), we need to set a
constraint for each pair of zi,j and zl,j (i, l = 1, ...,K), which
generates O(K3) constraints to D-VLP in total. Although
LP is solvable by many existing approaches, it is crucial to
reduce the huge number of constraints, which highly affects
the time-efficiency for solving the LP problem [41].

Fortunately, there are some features of partitioned in-
tervals in road networks that can be exploited to reduce
the number of inequality constraints in D-VLP. Along these
features, we find that, to constrain all pairs of intervals
partitioned in the road network, it is sufficient to apply Geo-
I to pairs of intervals that are “adjacent” (Definition 4.1),
achieving constraint reduction.

Before describing the constraint reduction, we first intro-
duce Definition 4.1–4.2, Property 4.1, and Theorem 4.2.

Definition 4.1. (Auxiliary graph) We build a weighted di-
rected auxiliary graph G′ = (U ′, E ′), where the vertex
set U ′ = {u′1,u′2, ...,u′|U|} corresponds U , and if any pair
of ui and ul are adjacent in the road network and the
worker can directly travel from ui to ul, then we build
a directed edge from u′i to u′l with weight δ in G′ (Fig. 6
gives an example).

u1u2u3

u
5

u
4

u 6

u'1

u'2u'3

u'
5

u'
4

u' 6

Auxiliary graph

Vehicle road network

Fig. 6. Auxiliary graph.

The auxiliary graph G′ is
used to describe the relationship
among intervals in U , where the
traveling distance between any
pair of vertices, say u′i and u′l,
equals to the traveling distance
between the corresponding in-
tervals ui and ul. Accordingly,
checking Geo-I between ui and
ul is equivalent to checking Geo-
I for u′i and u′l. With the auxiliary graph, we can directly
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apply some existing data structures (e.g., shortest path trees)
to help implement the constraint reduction.

Definition 4.2. We use u′i
G(ε,r)
' u′l to denote that Geo-I is

satisfied in the direction from u′i to u′l. More precisely,

u′i
G(ε,r)
' u′l if zi,j − eεdG(ue

i ,u
e
l )zl,j ≤ 0, ∀uj .

According to Definition 3.1 and Definition 4.2, it is trivial
to obtain Property 4.1:
Property 4.1. u′i and u′l satisfies (ε, r)-Geo-I constraint if only

if u′i
G(ε,r)
' u′l and u′l

G(ε,r)
' u′i.

In Theorem 4.2, we introduce the transitivity of Geo-I
over road networks:
Theorem 4.2. (Transitivity) Given any pair of vertices u′1

and u′K , suppose that a shortest path from u′1 to u′K
is composed of K − 1 edges in G′: (u′1,u

′
2) → ... →(

u′K−1,u
′
K

)
, then

u′k
G(ε,r)
' u′k+1, (k = 1, ...,K − 1)⇒ u′1

G(ε,r)
' u′K (22)

Proof The detailed proof can be found in [30].

According to Theorem 4.2, to provide a sufficient condition
of the Geo-I constraint for any pair of vertices u′i and u′l in
U ’, we can first 1) find the shortest path between u′i and u′l in
both directions (from u′i to u′l and from u′l to u′i), and then
2) select the shortest path between the two paths, say P ,

and set the Geo-I constraint u′k
G(ε,r)
' u′k+1 for each pair of

adjacent vertices u′k and u′k+1 in P . We repeat such process
for all pairs of vertices in G′.

In the above process of constraint reduction, any con-

straint constructed by adjacent vertices, say u′k
G(ε,r)
' u′k+1,

won’t shrink the feasible region of the D-VLP, since u′k and
u′k+1 themselves also need to satisfy the Geo-I constraint
(according to Property 4.1). Hence, the optimality of D-VLP
will not be lost by the constraint reduction.

Since each pair of adjacent vertices in P must be the
two endpoints of an edge in G′, the number of possible
adjacent vertices in all shortest paths cannot exceed M (M
denotes the number of edges in the auxiliary graph G′, i.e.,
M = |E ′|). For each obfuscated vertex u′j (j = 1, ...,K)
(i.e., the obfuscated location is in uj), instead of building
constraint for each pair of vertices in U ′, we only need to
build up to M constraints for the pairs that are adjacent.
Hence, the total number of constraints to be added is
O(KM). Since the auxiliary graph G′ is close to a planar
graph in the real-world, M is close to K. Accordingly, the
number of constraints in D-VLP can be reduced fromO(K3)
to approximately O(K2).

Algorithm 1 provides the pseudo code of our constraint
reduction method: We use an indicator matrix Ucon =
{ui,j}K×K to represent whether a constraint for u′i and u′j
is added: if the pair {u′i,u′j} needs a constraint, ui,j = 1;
otherwise, ui,j = 0. To find the shortest path between all
pairs of vertices in G′, we build the shortest path trees (SPTs)
[42] rooted at each vertex u′i (i = 1, ..., |U|), respectively.

We note that the shortest path between any pair of
vertices can be in both directions and we only need to check
Geo-I for the shorter one. Here, for each u′i, we build two
SPTs: SPT-Out(i) and SPT-In(i) (as shown in Fig. 7(a)(b)), in

u'i

(a) SPT-Out(i)

u'i

(b) SPT-In(i)

Fig. 7. Example: the two types of SPTs for the vertex u′i (U ′In,i and
U ′Out,i are respectively marked by red color and blue color).

which all the paths take u′i as the source and the destination,
respectively (line 4). After building a SPT (can be either
SPT-Out(i) or SPT-In(i)), it is unnecessary to find the path
for each vertex to (or from) u′i in the tree, since the vertex
may have a shorter path with u′i in the other tree. Hence,
before finding the paths, we categorize all the vertices in
U ′\u′i into two subsets U ′In,i and U ′Out,i based on whether
each vertex in U ′\u′i has a shorter path to (or from) u′i
in SPT-In(i) than in SPT-Out(i) (line 5-9). After the vertex
categorization, in SPT-In(i), all the paths from the vertices
in U ′In,i to u′i are collected; and in SPT-Out(i), all the paths
from u′i to the vertices in U ′Out,i are collected. Finally, for
each pair of adjacent vertices in the collected paths, we add
the corresponding constraint to D-VLP (line 10–13).

Algorithm 1: Pseudo-code of constraint reduction.
input : G = (V, E)
output : Ucon = {ui,j}|U|×|U |

1 Initialize Ucon by 0;
2 Initialize the sets U ′In,1, ...,U

′
In,|U|, U

′
Out,1, ...,U

′
Out,|U| by

empty;
3 for each ui ∈ V do
4 Build both SPT-In(i) and SPT-Out(i);
5 for each uj ∈ V\ui do
6 if ShPD(ui, uj) ≤ ShPD(uj , ui) then
7 add u′j to U ′Out,i;

8 otherwise do
9 add u′j to U ′In,i;

10 for each u′j ∈ U ′Out,i do
11 Traverse the edges in the path from u′j to u′i and let

ul,k = 1 if (u′l,u
′
k) is an edge in the path;

12 for each u′j ∈ U ′I,i do
13 Traverse the edges in the path from u′j to u′i and let

ul,k = 1 if (u′l,u
′
k) is an edge in the path;

14 return Ucon;

Time complexity analysis of the constraint reduction. The
constraint reduction mainly includes SPT building (line 4),
vertex categorization (line 5–9), and constraint addition (line
10–13) for each u′i (i = 1, ..., |U|). We adopt a well-developed
method Dijkstra [42] to build the SPTs, of which the time
complexity is O(M + K logK). Vertex categorization re-
quires to compare the length of each vertex’s two paths
with u′i, taking up to K comparisons. Constraint addition
requires to traverse all the edges in the two SPTs, both of
which have up to K edges. Eventually, the time complexity
of the constraint reduction method can be calculated by

Tcr = O(K)× (O(M +K logK)︸ ︷︷ ︸
line 4

+ O(K)︸ ︷︷ ︸
line 5-9

+ O(K)︸ ︷︷ ︸
line 10–13

)

= O
(
MK +K2 logK +K2) . (23)
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4.3 Optimization Decomposition

With the constraint reduction in Section 4.2, the num-
ber of constraints is reduced from cubic to approximately
quadratic. Nevertheless, the computation load is still ex-
tremely high, e.g., thousands of discrete locations will gen-
erate millions of decision variables in D-VLP. To further im-
prove the time efficiency of the algorithm, we adopt decom-
position techniques to decompose D-VLP to smaller prob-
lems that can be processed in parallel [43]. We find that in
D-VLP, 1) the Geo-I constraints for each zj = [z1,j , ..., zK,j ]
are all disjoint; 2) only the constraints of the probability
unit measure (Equ. (21)) link together the different decision
vectors z1, ..., zK . With such constraint structure, D-VLP is
well-suited to Dantzig-Wolfe (DW) decomposition [44].

4.3.1 Dantzig-Wolfe (DW) formulation
Since all the Geo-I constraints are linear, the Geo-I con-
straints for each decision vector zl (l = 1, ...,K) de-
fine a polyhedron Λl in a K dimensional space. We let
Zl =

{
ẑ1
l , ..., ẑ

Tl

l

}
denote the set of extreme points of Λl.

Then, any decision vector zl ∈ Λl can be represented as
a convex combination of ẑ1

l , ..., ẑ
Tl

l , i.e., zl =
∑Tl

t=1 λl,tẑ
t
l ,

where
∑Tl

t=1 λl,t = 1, λl,t ≥ 0. Accordingly, D-VLP can be
rewritten as the following DW formulation:

min
∑
l

∑
i

ci,l
∑
t

λl,tẑ
t
i,l (24)

s.t.
∑
l

∑
t

λl,tẑ
t
k,l = 1, ∀k,

Tl∑
t=1

λl,t = 1, λl,t ≥ 0,∀l.

where λl,t (t = 1, ..., Tl, l = 1, ...,K) are the decision
variables in the DW formulation.

4.3.2 Column Generation (CG) Algorithm
The number of decision variables (extreme points) in the
DW formulation is exponential toK, so the DW formulation
itself does not improve the time-efficiency if we directly
solve it standard LP approaches. According to [45], most
extreme points in the DW formulation are inactive, i.e., are
not visited during the searching process in the algorithms
such as the revised simplex method [41]. As such, we apply
CG [46] to solve D-VLP in the DW formulation, which is
composed of two steps (Fig. 8 shows the framework of CG):
Step I (Initialization): We start with a reduced DW for-
mulation (RDW), where only a subset of extreme points
Z1, ...,ZK (Z l ⊆ Zl (l = 1, ...,K)) are considered in the DW
formulation. We use λ

∗
to represent the solution of RDW.

When selecting Z1, ...,ZK , we need to ensure the feasible
region of RDW to be non-empty2 for the sake of convergence
of CG [46]. Note that λ

∗
derived from RDW does not

necessarily achieve the optimal of the DW formulation.
Hence, we need to test λ

∗
’s optimality in DW in Step II.

Step II (Optimal test): We first introduce Proposition 4.3 for
the optimal test:

Proposition 4.3. λ
∗

achieves the optimal if only if (π∗,µ∗) is
dual feasible for the DW formulation, i.e., ∀l = 1, ...,K,

sub1 : mint∈Zl

{∑
k ẑ

t
k,lπ
∗
k + µ∗l +

∑
i ci,lẑ

t
i,l

}
≥ 0.

(25)
2. Here, we initialize each Z(1)

l by the extreme point el, where el is a
K + 1 dimension vector with the lth entry equal to 1 and all the other
entries equal to 0.

... decompose
subMsub1

WD Higher level: RWD

Lower level: Optimal test

solution
suggest new 

columns to add

restrict

Fig. 8. Frame of the column generation algorithm.

Proof The detailed proof can be found in [47].

Note that checking each subl in Equ. (25) is essentially
to solve a LP problem with K decision variables, i.e.,
zl = [z1,l, ..., zK,l]. The decision variables in sub1, ...,
subK are fully decoupled, and hence sub1, ..., subK can
be solved in parallel. In subl, there exists an extreme point
z′l = [z′1,l, ..., z

′
K,l] such that∑
k z
′
k,lπ
∗
k + µ∗l +

∑
i ci,lz

′
i,l < 0, (26)

then λ
∗

has not achieved the optimal and we need to add
the extreme point (column) z′l to the RDW to improve λ

∗
.

This process is repeated until the optimal objective value of
each subl is non-negative.

4.3.3 Time-efficiency of CG
We first analyze the time complexity of RDW and subl in
each iteration n:
1) RDW: The number of decision variables in RDW is at
most nK , as in each iteration we only add up to 1 column
for each polyhedron. Based on the experimental results
(Fig. 13(d)), it takes CG up to 5 iterations to reach a near-
optimal solution (n ≤ 5), indicating that RDW contains
O(K) decision variables per iteration.
2) subl: Each subl has K decision variables in zl.

Accordingly, the numbers of decision variables in RDW
and subl are both O(K), indicating that both problems can
be solved efficiently with standard LP methods.

The next question is how many iterations are needed
to achieve the optimal solution, namely the convergence of
CG. In fact, CG in DW formulation has been proved to
have finite convergence [45]. Nevertheless, as pointed by
our experimental results in Fig. 13(a)), there is possibly a
long tail of the convergence. To increase the time-efficiency,
we set ξ by a negative value with small magnitude, such
that the algorithm will be ended immediately once the
objective value of each subl is at least ξ. The experimental
results demonstrate that, with proper value set to ξ, the
computation time of CG will be reduced significantly with
the objective value (ETDD) sacrificed a little (e.g., by up to
3.12% in Fig. 13(c)). More details will be discussed in Section
5. Theorem 4.4 gives an lower (dual) bound of the DW’s
optimal to check how close CG can achieve the optimal:
Theorem 4.4. In each iteration of CG,

ω =
∑
k π
∗
k +

∑
l (µ∗l − ζl) (27)

offers a lower bound of DW’s optimal, where

ζl = minzl∈Λl

{∑
k ẑ

t
k,lπ
∗
k + µ∗l +

∑
i ci,lẑ

t
i,l

}
. (28)

Proof According to Equ. (28),

minzl∈Λl

{∑
k ẑ

t
k,lπ
∗
k + (µ∗l − ζl) +

∑
i ci,lẑ

t
i,l

}
= 0, (29)

indicating that π∗1, ..., π∗K , (µ∗1 − ζ1), ..., (µ∗K − ζK) construct
a feasible solution of the dual problem of RDW. Therefore,
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the corresponding objective value in the dual problem, i.e.,∑
k π
∗
k +

∑
l (µ
∗
l − ζl) offers a lower bound of the optimal

solution of RDW (according to weak duality [41]).

4.4 Trade-off Analysis of QoS and Privacy
In addition, we note that it is difficult to decrease the quality
loss (ETDD E

(
∆dG

(
P, P̃ ;Q

))
) and increase the privacy

level ε at the same time. Hence, in practice, it is important
to balance QoS and privacy based on users’ preferences. For
theoretical interests, Proposition 4.5 describes a relationship
between E

(
∆dG

(
P, P̃ ;Q

))
and ε by a closed-form

expression:

Proposition 4.5. E
(

∆dG
(
P, P̃ ;Q

))
is lower bounded by

maxl κ
max
l (ε), where κmax

l (ε) = maxj {κl,j(ε)} and
κl,j(ε) =

∑
i ci,je

−εdmin
G (ue

i ,u
e
l ).

Proof According to Equation (6), for each pair of zi,j and
zl,j , we have zi,j

zl,j
≥ e−εd

min
G (ue

i ,u
e
l ). Given that

∑
i ci,jzi,j =∑

i ci,jzl,j
zi,j
zl,j

, we can obtain∑
i

ci,jzi,j ≥
∑
i

ci,je
−εdmin

G (ue
i ,u

e
l )

︸ ︷︷ ︸
κl,j(ε)

zl,j (30)

and hence
E
(

∆dG
(
P, P̃ ;Q

))
=
∑
j

∑
i

ci,jzi,j ≥
∑
j

κl,j(ε)︸ ︷︷ ︸
has to be smaller
than κmax

l (ε), ∀j

zl,j

⇒ E
(

∆dG
(
P, P̃ ;Q

))
≥ max

l
κmax
l (ε). (31)

The proof is completed.

Note that maxl κ
max
l (ε) (l = 1, ...,K) is a function that de-

creases monotonically. Hence, Proposition 4.5 offers a refer-
ence to balance privacy and QoS in our scheme: 1) to achieve
a target privacy level, the quality loss cannot be lower
than a derived bound, and 2) lower ε (i.e., higher privacy
level) enforces a higher lower bound of E

(
∆dG

(
P, P̃ ;Q

))
,

indicating that a higher quality loss is likely to generate.
In Section 5.1, we will further analyze how quality loss is
impacted by ε by trace-driven simulation (in Fig. 11(a)).

5 PERFORMANCE EVALUATION

In this section, we turn our attention to practical applica-
tions of our location obfuscation approach.

5.1 Simulation
The two main metrics we will measure include:
1) ETDD, which is defined in Equ. (12). We use this metric
to reflect the quality loss of location obfuscation strategies.
2) The best guess of the adversary given the reported, or AdvError
for short [24]. Here we assume the adversary use the optimal
inference attack [27]. We adopt this metric to reflect the privacy
level that our approach can achieve, where higher AdvError
indicates higher privacy level.
Dataset. We test the performance of our approach with a
real-world dataset provided by [34], which records the tra-
jectories of taxi cabs in Rome, as taxi services are considered
as a type of VSC [34]. The dataset contains GPS coordinates
of approximately 290 taxis collected over 30 days. Fig. 9
depicts the heat map of all taxi cabs’ recorded location,
from which we can observe that, on average taxi cabs are

(a) Taxis location density
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Fig. 9. Taxi cabs’ trajectories in Rome, Italy.
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Fig. 10. Performance of our approach with different δ (simulation).

more likely located in downtown than in the suburbs. Also,
different vehicle has different number of recorded location
points, traveling time, and path distance, where Fig. 9(b)
gives the histogram of these three metrics. Here, we select
the 120 cabs with the highest number of records in the
trace and estimate each cab’s prior probability distribution
fP (p) based on its own records. We conduct a simulation
for each single cab, where we randomly pick up a location
on the road network based on the vehicle’s fP (p), and find
the obfuscated location with our approach. In addition, we
assume that the task’s (customer’s) location has the same
probability distribution with the location of all cabs [37].
Comparison with the lower bound. As the minimum
quality loss in VLP is within the gap between its lower
bound (derived in Proposition 3.3. in [30]) and the quality
loss of our approach, it is interesting to check how close our
approach can achieve the optimal by comparing the QoS
achieved by our approach with the lower bound. Fig. 10(a)
compares the quality loss of our approach and the lower
bound for 120 cabs, where we set the interval size δ in the
D-VLP by 0.05km, 0.1km, and 0.15km, respectively. From
the figure, we can observe that the denser we partition the
road network in the approximation algorithm, the closer our
solution can achieve the lower bound. This observation is
also confirmed in Fig. 10(b), which gives the box plot of the
approximation ratio of our approach (i.e,, the ratio between
our approach’s quality loss and the lower bound) for 120
cabs with different δ. Note that when the approximation
ratio = 1, the solution achieves the optimal.
Comparison with 2D-plane based methods. We also com-
pare our approach with the existing 2D-based location
obfuscation methods. Here, we pick a state of the art
mechanism introduced in [24] as baseline. Note that [24]
is also a global optimization framework: given the privacy
constraint, the object is to minimize the quality loss. Dif-
ferent from our approach, this 2D-based method (or simply
2Db) assume locations on a 2D plane and both quality loss
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Fig. 11. Comparison of our approach with 2Db (simulation).
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Fig. 12. Performance of our approach with different ε (simulation).

and privacy are measured by the Euclidean distance3. Fig.
11(a)(b) compare the average quality loss and AdvError of
120 cabs by using our approach and 2Db, respectively. Not
surprisingly, our approach outperforms 2Db in both metrics
since 2Db neglects the structure feature of the road network.
For example, a pair of locations with shorter Euclidean
distance may take longer path distance in the road network.
Performance given different threshold values for ε. Besides
testing our approach’s effectiveness, we check how the
parameter ε in Geo-I will impact the quality loss and privacy
of our method in Fig. 12(a)(b), in which ε is changed from
1/km to 10/km. From the figures, we observe that larger ε
generates lower quality loss and lower AdvError. According
to the definition of (ε, r)-Geo-I (Definition 3.1), with higher
ε (e.g., ε = 10/km), the obfuscated location probability can
be less evenly distributed over the road network. Hence,
the obfuscated location around the true location will have
higher probability to be selected, as shown in the heat map
in Fig. 12(c), leading to a lower quality loss and a lower
AdvError. In contrast, when ε is lower (e.g., ε = 2/km),
the obfuscated location probability is required to be more
evenly distributed, as shown in the heat map in Fig. 12(d).
Then, obfuscated locations with relatively higher traveling
distance from (to) the true location will have higher prob-
ability to be selected, which causes higher quality loss and
AdvError. According to Fig. 11(c)(d), we also find that it is

3. Note that 2Db may choose an obfuscated location that is not
included in any edge in the network, so given an obfuscated location
calculated by 2Db, we assume that the adversary will take the location
in the road network that has the shortest Euclidean distance to this
obfuscated location as the “reported location” from the worker
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Fig. 13. Time-efficiency improved by constraint reduction and the col-
umn generation.

difficult to increase both QoS and privacy at the same time.
As expected, it is very important to take a trade-off between
the two objectives based on workers’ preference.
Time-efficiency improved by constraint reduction. Next,
we test how constraint reduction (CR) introduced in Section
4.2 can reduce the number of Geo-I constraints in Fig.
13(a). From the figure, we find that CR largely reduces the
number of Geo-I constraints in D-VLP. More precisely, when
δ = 0.15km, 0.1km, 0.05km, the number of constraints are
reduced by and 99.86%, 99.87%, and 99.88%, respectively.
Here, the number of edges in the auxiliary graph are only
56.7%, 28.4%, and 18.9% higher than the number of vertices
in the graph when δ = 0.15km, 0.1km, 0.05km, indicating
that CR reduces the number of constraints in D-VLP from
cubic to approximately quadratic with the respect to the
number of intervals partitioned in D-VLP.
Convergence of the Column Generation (CG) algorithm.
we next evaluate the convergence of CG (introduced in
Section 4.3.2). Fig. 13(b) shows how minl{ζl} changes over
iterations when δ = 0.15km, 0.1km, 0.05km (i.e., when
minl{ζl} = 0, the algorithm ends with the optimal solution).
From the figure we find that 1) minl{ζl} converges faster
when δ is smaller (which generates more decision variables
in D-VLP), and 2) there is a long tail in the convergence
before minl{ζl} achieving 0. Therefore, it is not time-efficient
to wait until minl{ζl} = 0. As solution, We determine a
negative number ξ < 0 that is close to 0 as a threshold of
minl{ζl}, i.e., the algorithm is terminated once minl{ζl} ≥ ξ
such that the time-efficiency of CG is guaranteed and the op-
timality of D-VLP is only sacrificed slightly. Clearly, higher ξ
enforces ETDD to achieve the optimal more closely via CG,
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but will generate a higher computation load.
Fig. 13(b) indicates that the convergence of CG will slow

down after minl{ζl} reaches a certain level. We choose to
end the algorithm before minl{ζl} reaches the long tail,
which slightly sacrifices the optimality of the CG’s solution
but significantly improves its time-efficiency. We implement
it by setting a threshold ξ for minl{ζl} (ξ is a negative value
close to 0) and end the algorithm once minl{ζl} ≥ ξ. Here,
higher ξ generates a solution closer to the optimal, but is
more likely to cause a higher computation load. Fig. 13(c)(d)
show the number of iterations to end the algorithm and
the ETDD, with ξ increased from −1.0 to −0.1. The figure
indicates that when ξ reaches a certain value (e.g., ξ = −0.2
when δ = 0.05km and ξ = −0.1 when δ = 0.10km or
0.15km), the number of iterations increases rapidly (by up
to 20 times), but the corresponding quality loss (ETDD) is
maintained at the same level. As such, we set ξ = −0.3
in the algorithm to lower the number of iterations without
significantly affecting the quality loss.

Fig. 13(e) shows the approximation ratio of CG (i.e., the
ratio of ETDD achieved by CG to the lower bound derived
in Theorem 4.4) given different δ. The figure indicates
that CG can achieve a near-optimal solution, i.e., when
δ = 0.15km, 0.1km, 0.05km, the average approximation
ratios of CG are 1.031, 1.048, and 1.059, respectively. Fig.
13(f) lists the number of iterations and the corresponding
computation time in CG, where the number of iterations is
at most 4 and the highest computation time is 0.36s.
Multi-vehicle task assignment. Note that when ETDD for
every single vehicle is lower, tasks are more likely to be
matched to their nearby workers and hence the overall
traveling cost of all the vehicles is lower. To test the cost-
effectiveness of the GO function for the multi-vehicle task
assignment, we randomly deploy 20 tasks and 30 vehicles
over the maps, and let the server assign the tasks to the
vehicles. Here, the vehicles’ locations are obfuscated by our
approach and 2Db, respectively. Fig. 14 compares the total
traveling distance of all the vehicles using the two obfus-
cation methods, with ε increased from 1 to 10. The figure
shows that our approach has a lower traveling cost than
2Db, since the server can estimate the traveling cost between
vehicles and tasks more accurately using our approach,
leading to more efficient task assignments.
Spatial correlation aware inference attack. Next, we test
the privacy level achieved by our obfuscation algorithm
when vehicles report their locations multiple times. We
consider two types of threat models introduced in Section
3.2: Bayesian inference attack (denoted by Bayes) and spa-
tial correlation aware attack (denoted by HMM). Fig. 15
compares AdvError achieved by our approach under the
attack of Bayes and HMM, when the report time interval is

(a) Requester (b) Worker (I) (c) Worker (II)

Fig. 16. User interface of the prototype.
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Fig. 17. Comparison with the lower bound (real implementation).

increased from 70 to 105 seconds4. From the figure, we can
find that our obfuscation strategy achieves a lower privacy
level under HMM than under Bayes, particularly when re-
porting time interval is lower than 84 seconds. It is because
that lower report time interval indicates a higher spatial cor-
relation between adjacent reported locations, which helps
HMM improve the accuracy of the inference attack. The
figure also indicates that when the report time interval is
high enough, e.g., higher than 91 seconds, the correlation
of adjacent reports from vehicles is insignificant, and our
approach has a similar accuracy under HMM and Bayes.
We can also find that the accuracy of our approach is not
impacted by report interval under Bayes since Bayes infers
vehicles’ locations in each round independently without
considering the correlation between adjacent reports.

5.2 Real Implementation
Finally, we build a prototype of our obfuscation approach,
including functions such as task request/assignment and
location obfuscation. On the user-side, an Android APP on
smartphones has been developed based on the Google map
API. Fig. 16(a)(b)(c) show the user interfaces, where each
user can register as either a worker or a requester:
Requester: As shown in Fig. 16(a), a requester can upload
his/her task with the task location specified.
Worker: The APP downloads the obfuscation matrix from
the server, based on which the worker can report his/her
obfuscated location to the server. Fig. 16(b) shows the dis-
tribution of obfuscated locations. After receiving workers’
reported location, the server sends a list of task requests to
the worker, along with the traveling cost estimated based on
the worker’s obfuscated location. By selecting a task request,
a route will be displayed on the map to navigate this worker
to the selected task location, as shown in Fig. 16(c).

Based on this prototype, we then carried out a pilot
study to test the performance of our obfuscation strategy.

4. In [34], each taxi reports location every 7 seconds. To create a
trajectory with the report time interval equal to 7n, we take 1 sample
from every n reports in the trace.
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Fig. 19. Comparison of our approach with a 2D-based method in region
A and B (real implementation).

We select the Rowan campus as the target region and set the
length of road partitioned interval δ = 0.05km.

First, we randomly deploy 5 tasks over the campus. A
vehicle participant equipped with a smartphone (considered
as the worker) drove around the campus and reported the
location every 20–30 seconds. We conduct 20 groups of tests.
Fig. 17 compares ETDD achieved by our approach with
the corresponding lower bound derived in Theorem 4.4.
The figure demonstrates that our approach can achieve the
optimal closely, where the approximation ratio is up to 1.14
among the 20 groups.

Moreover, to test the impact of the road network on the
performance of our approach, we select two regions that
have different road network features (as Fig. 18 shows):
1) Region A (a rural area): where road segments are sparsely
distributed, with less one-way streets, and
2) Region B (Glassboro downtown): where road segments
are densely distributed, with more one-way streets.
We randomly deploy 50 tasks in each region and run the
experiment in each region, respectively.

We first let the participant generate obfuscated locations
using our approach, where ETDD and AdvError in regions
A and B are depicted in Fig. 19(a)(b). From the figures, we
can observe that, on average, ETDD and AdvError in region
B are 310.68% and 210.52% higher than in region A. ETDD
in downtown (region B) has higher ETDD because, with a
higher number of road segments and one-way streets, the
sensitivity of traveling distance to obfuscation is higher, i.e.,
obfuscation is more likely to generate high ETDD. Also,
AdvError is higher in the downtown area due to the more
complicated road network topology, where the deviation
between the locations estimated by the adversary and the
real locations is higher over roads.

We then change the number of tasks from 5 to 10 in
both regions A and B, and depict the average ETDD and the
average AdvError in Fig. 20(a)(b). The figures imply that
in both regions 1) ETDD decreases with the increase of the
number of tasks, while 2) AdvError is maintained at the
same level as the number of tasks increases. For 1), it is
because when more tasks are distributed in the region, the
average distance to the nearest task is smaller, leading to
a smaller ETDD on average. For 2), both our LP approach
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Fig. 20. Comparison of our approach with a 2D-based method with
different task load (real implementation).
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Fig. 21. Comparison of our approach with a 2D-based method with
different task load (real implementation).

(which generates the obfuscated location) and the Bayesian
inference attack (Equ. (4), which takes obfuscated locations
as inputs and outputs the estimated location) don’t take
the number of tasks as an input. Therefore, the adversary’s
estimated locations and AdvError are not impacted by the
number of tasks.

Finally, we let the vehicle participate generate obfus-
cated locations using the 2D-based method, and compare
its ETDD and AdvError with our approach in Fig. 21(a)(b),
respectively. The two figures demonstrate that our approach
outperforms the 2D-based method in terms of both ETDD
and AdvError, which is consistent with the simulation re-
sults in Fig. 11(a)(b). Particularly, in region A, ETDD and
AdvError of our approach are 7.41% lower and 5.21% higher
than that of the 2D-based method. In region B, our ap-
proach’s ETDD and AdvError are 10.71% lower and 8.64%
higher than the 2D-based method.

6 RELATED WORK
During the last decade, a variety of location privacy pro-
tection approaches have been developed. Many of these
methods allow users to hide his identity from the server,
such as k-anonymity (i.e., a user’s location cannot be distin-
guished with the other k−1 users) [14], [15], cloaking (i.e., the
accurate location is hidden in a obfuscated region) [16], [17].
Some other works let users use pseudonyms to interact with
the system, where the users can change their pseudonyms
without being traced by the system [18]. These approaches
cannot be applied to VSC, since in VSC workers’ identity has
to be known by the server for task distribution. Although
obfuscation has been also widely used for protecting location
privacy [19]–[23], [27]. It introduces errors to location-based
services, and hence one key problem is how to establish a
trade-off between QoS and privacy. For example, the strate-
gies introduced in [24]–[26] follow a global optimization
framework, which QoS (or privacy) constraints are satisfied.

Differential privacy [48]–[50] has also been applied to
address location privacy issues, though many of these works
are used to protect aggregate location information [51]–[53],
which is much different from the problem we discuss
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in this paper. As apposed to requiring low sensitivity of
aggregate output to a single individual change, the notion
of Geo-I we adopt in this paper sets constraints such that
any small change of location will not have a significant
effect on adversary’s observation. Following this notion,
many Geo-I based location obfuscation strategies have been
proposed [24]–[27]. Recently, some researchers have started
working on location privacy issues of some specific location
based services (LBS), such as mobile spatial crowdsourcing
(SC) [8]–[10]. Similar to our work, most of these methods
target maximizing the reacheability from workers to spatial
tasks without compromising workers’ location privacy.
However, all these works assume both workers’ and tasks’
location on a 2D plane. As we have demonstrated that
2D-based strategy cannot effectively achieve high QoS
and high privacy in a vehicle road network, these existing
approaches cannot be applied to VSC.

Recently, there are also some strategies proposed
to protect location privacy by considering the network
constrained mobility features [54], [55]. However, these
works are designed under different scenarios with
ours. For example, [54] proposes a location protection
mechanism to achieve l-diversity over roads, i.e., the user’s
location cannot be distinguished with other l − 1 dummy
locations. However, l-diversity is hardly to achieve in
many applications as it is based on a strong assumption
that dummy locations are equally likely to be the real
location from the adversary’s point of view [27], [28]. By
leveraging environmental factors such as road network and
traffic conditions, [54] introduces a threat model that tracks
vehicles’ trajectories according to users’ driving behaviors
(harsh braking/accelerating), which is different from our
work as we assume that adversaries’ inference attack is
based on vehicles’ obfuscated locations.

To date, the work closest to ours is [24]. [24] proposes
an optimal location obfuscation mechanism with regard to
Geo-I based on LP. However, their approach still assumes
users’ locations on a 2D plane and hence cannot be applied
in VSC. On the other hand, although [24] also proposes
an approximation technique to reduce the number of con-
straints in LP, their approach may not guarantee optimal
solutions as it shrinks the LP’s feasible region. Instead, by
exploiting some unique features of Geo-I on road networks,
our constraint reduction approach can significantly reduce
the computation time without losing the optimality of the
original problem. Moreover, our approach is more time-
efficient as we apply decomposition techniques by using the
constraint structure of the LP problem.

7 CONCLUSIONS
In this paper, we designed a location obfuscation strategy
to minimize the quality loss of task distribution without
compromising workers’ location privacy, as defined by Geo
Indisitiguishability constraints. Through discretization, we
approximated our obfuscation problem as a LP problem
that can be solved and further reduce its complexity by con-
straint reduction and optimization decomposition. Finally,
our experimental results demonstrate that our approach can
well approximate the optimal QoS, and also outperforms
state-of-the-art location obfuscation strategy in terms of both
QoS and privacy.

We see a number of promising directions for this research
work. For exmaple, we plan to further investigate VSC
privacy frameworks in heterogeneous settings, in which
users may have different QoS preferences over different
regions in the road network, e.g., some workers may tolerate
less quality loss in downtown than in suburban areas.
Moreover, we plan to consider different threat models where
the information disclosed to adversary is not only users’
uploaded location (e.g., mobile devices’ accelerometer and
gyroscope).
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